Skip to contents

Introduction

The GenerateModelCP function dynamically generates a Structural Equation Model (SEM) formula to analyze models with a single chained mediator and multiple parallel mediators for ‘lavaan’ based on the prepared dataset. This document explains the mathematical principles and the structure of the generated model.

serial-parallel within-subject mediation model


1. Model Description

1.1 Regression for YdiffY_{\text{diff}} and MdiffM_{\text{diff}}

For a single chained mediator M1M_1 and NN parallel mediators M2,M3,,MN+1M_2, M_3, \dots, M_{N+1}, the model is defined as:

  1. Outcome Difference Model (YdiffY_{\text{diff}}): Ydiff=cp+b1M1diff+i=2N+1(biMidiff+diMiavg)+d1M1avg+e Y_{\text{diff}} = cp + b_1 M_{1\text{diff}} + \sum_{i=2}^{N+1} \left( b_i M_{i\text{diff}} + d_i M_{i\text{avg}} \right) + d_1 M_{1\text{avg}} + e

  2. Mediator Difference Model (MidiffM_{i\text{diff}}): For the chained mediator (M1M_1): M1diff=a1+ϵ1 M_{1\text{diff}} = a_1 + \epsilon_1 For parallel mediators (M2,,MN+1M_2, \dots, M_{N+1}): Midiff=ai+b1iM1diff+d1iM1avg+ϵi M_{i\text{diff}} = a_i + b_{1i} M_{1\text{diff}} + d_{1i} M_{1\text{avg}} + \epsilon_i

Where: - cpcp: Direct effect of the independent variable. - b1,bib_1, b_i: Effects of the chained and parallel mediators. - d1,di,d1id_1, d_i, d_{1i}: Moderating effects of mediator averages. - ϵi\epsilon_i: Residuals.


2. Indirect Effects

For each mediator, the indirect effects are calculated as:

  1. Single-Mediator Effects: For the chained mediator: indirect1=a1b1 \text{indirect}_1 = a_1 \cdot b_1 For the parallel mediators (M2,,MN+1M_2, \dots, M_{N+1}): indirecti=aibi \text{indirect}_i = a_i \cdot b_i

  2. Chained Path Effects: For paths from the chained mediator through the parallel mediators: indirect1i=a1b1ibi \text{indirect}_{1i} = a_1 \cdot b_{1i} \cdot b_i

  3. Total Indirect Effect: The total indirect effect is the sum of all individual indirect effects: total_indirect=indirect1+i=2N+1(indirecti+indirect1i) \text{total_indirect} = \text{indirect}_1 + \sum_{i=2}^{N+1} \left( \text{indirect}_i + \text{indirect}_{1i} \right)


3. Total Effect

The total effect combines the direct effect and the total indirect effect: total_effect=cp+total_indirect \text{total_effect} = cp + \text{total_indirect}

Where cpcp is the direct effect.


4. Comparison of Indirect Effects

When comparing the strengths of indirect effects, the contrast between two effects is calculated as: CIpath1vspath2=indirectpath1indirectpath2 CI_{\text{path}_1\text{vs}\text{path}_2} = \text{indirect}_{\text{path}_1} - \text{indirect}_{\text{path}_2}

4.1 Example: Three Mediators (M1,M2,M3M_1, M_2, M_3)

  1. Indirect Effects:

    indirect1=a1b1 \text{indirect}_1 = a_1 \cdot b_1

    indirect2=a2b2 \text{indirect}_2 = a_2 \cdot b_2

    indirect3=a3b3 \text{indirect}_3 = a_3 \cdot b_3

    indirect12=a1b12b2 \text{indirect}_{12} = a_1 \cdot b_{12} \cdot b_2

    indirect13=a1b13b3 \text{indirect}_{13} = a_1 \cdot b_{13} \cdot b_3

  2. Comparisons:

    CI1vs2=indirect1indirect2 CI_{1\text{vs}2} = \text{indirect}_1 - \text{indirect}_2

    CI1vs3=indirect1indirect3 CI_{1\text{vs}3} = \text{indirect}_1 - \text{indirect}_3

    CI1vs12=indirect1indirect12 CI_{1\text{vs}12} = \text{indirect}_1 - \text{indirect}_{12}

    CI1vs13=indirect1indirect13 CI_{1\text{vs}13} = \text{indirect}_1 - \text{indirect}_{13}

    CI2vs3=indirect2indirect3 CI_{2\text{vs}3} = \text{indirect}_2 - \text{indirect}_3

    CI2vs12=indirect2indirect12 CI_{2\text{vs}12} = \text{indirect}_2 - \text{indirect}_{12}

    CI2vs13=indirect2indirect13 CI_{2\text{vs}13} = \text{indirect}_2 - \text{indirect}_{13}

    CI3vs12=indirect3indirect12 CI_{3\text{vs}12} = \text{indirect}_3 - \text{indirect}_{12}

    CI3vs13=indirect3indirect13 CI_{3\text{vs}13} = \text{indirect}_3 - \text{indirect}_{13}

    CI12vs13=indirect12indirect13 CI_{12\text{vs}13} = \text{indirect}_{12} - \text{indirect}_{13}


5. C1 and C2 Coefficients

Definitions

  1. C2-Measurement Coefficient (X1b,iX1_{b,i}): X1b,i=bi+di X1_{b,i} = b_i + d_i

  2. C1-Measurement Coefficient (X0b,iX0_{b,i}): X0b,i=X1b,idi X0_{b,i} = X1_{b,i} - d_i

5.1 Example: Three Mediators (M1,M2,M3M_1, M_2, M_3)

  1. Mediator M1M_1:

    X1b,1=b1+d1 X1_{b,1} = b_1 + d_1

    X0b,1=X1b,1d1 X0_{b,1} = X1_{b,1} - d_1

  2. Mediator M2M_2:

    X1b,2=b2+d2 X1_{b,2} = b_2 + d_2

    X0b,2=X1b,2d2 X0_{b,2} = X1_{b,2} - d_2

  3. Mediator M3M_3:

    X1b,3=b3+d3 X1_{b,3} = b_3 + d_3

    X0b,3=X1b,3d3 X0_{b,3} = X1_{b,3} - d_3

  4. Chained Path (M1M2M_1 \to M_2):

    X1b,12=b12+d12 X1_{b,12} = b_{12} + d_{12}

    X0b,12=X1b,12d12 X0_{b,12} = X1_{b,12} - d_{12}

  5. Chained Path (M1M3M_1 \to M_3):

    X1b,13=b13+d13 X1_{b,13} = b_{13} + d_{13}

    X0b,13=X1b,13d13 X0_{b,13} = X1_{b,13} - d_{13}


6. Summary of Regression Equations

This section summarizes all equations used in the model:

Ydiff=cp+b1M1diff+i=2N+1(biMidiff+diMiavg)+d1M1avg+e Y_{\text{diff}} = cp + b_1 M_{1\text{diff}} + \sum_{i=2}^{N+1} \left( b_i M_{i\text{diff}} + d_i M_{i\text{avg}} \right) + d_1 M_{1\text{avg}} + e

M1diff=a1+ϵ1 M_{1\text{diff}} = a_1 + \epsilon_1

Midiff=ai+b1iM1diff+d1iM1avg+ϵi M_{i\text{diff}} = a_i + b_{1i} M_{1\text{diff}} + d_{1i} M_{1\text{avg}} + \epsilon_i

indirect1=a1b1 \text{indirect}_1 = a_1 \cdot b_1

indirecti=aibi \text{indirect}_i = a_i \cdot b_i

indirect1i=a1b1ibi \text{indirect}_{1i} = a_1 \cdot b_{1i} \cdot b_i

CIpath1vspath2=indirectpath1indirectpath2 CI_{\text{path}_1\text{vs}\text{path}_2} = \text{indirect}_{\text{path}_1} - \text{indirect}_{\text{path}_2} X1b,i=bi+di X1_{b,i} = b_i + d_i

X0b,i=X1b,idi X0_{b,i} = X1_{b,i} - d_i


This comprehensive approach supports models with both chained and parallel mediators, enabling detailed analysis of their effects and interactions.