Skip to contents

Introduction

The GenerateModelCN function dynamically generates a Structural Equation Model (SEM) formula to analyze chained or nested mediation for ‘lavaan’ based on the prepared dataset. This document explains the mathematical principles and the structure of the generated model.

serial within-subject mediation model


1. Difference Model Description

1.1 Regression for YdiffY_{\text{diff}} and MdiffM_{\text{diff}}

For NN mediators M1,M2,,MNM_1, M_2, \dots, M_N, the difference model is defined as:

  1. Outcome Difference Model (YdiffY_{\text{diff}}): Ydiff=cp+i=1N(biMdiff,i+diMavg,i)+e Y_{\text{diff}} = cp + \sum_{i=1}^N \left( b_i M_{\text{diff},i} + d_i M_{\text{avg},i} \right) + e

  2. Mediator Difference Model (Mdiff,iM_{\text{diff},i}): Mdiff,i=ai+j<i(bjiMdiff,j+djiMavg,j)+ϵi M_{\text{diff},i} = a_i + \sum_{j<i} \left( b_{ji} M_{\text{diff},j} + d_{ji} M_{\text{avg},j} \right) + \epsilon_i

Where: - cpcp: Intercept term for the outcome difference model. - bib_i: Average effect of mediator MiM_i on YdiffY_{\text{diff}}. - did_i: Moderator effect for Mavg,iM_{\text{avg},i} in YdiffY_{\text{diff}}. - bjib_{ji} and djid_{ji}: Regression coefficients for Mdiff,jM_{\text{diff},j} and Mavg,jM_{\text{avg},j} on Mdiff,iM_{\text{diff},i}, respectively. - ϵi\epsilon_i: Residual for Mdiff,iM_{\text{diff},i}.


2. Indirect Effects

For each mediator MiM_i, the indirect effect is defined as: indirecti=aibi \text{indirect}_i = a_i \cdot b_i

For chained mediators, the indirect effects follow the paths through the mediators: 1. For a single mediator MiM_i: indirecti=aibi \text{indirect}_i = a_i \cdot b_i

  1. For a chained pathway M1M2MkM_1 \to M_2 \to \dots \to M_k: indirect1k=a1b12b23bk \text{indirect}_{1 \dots k} = a_1 \cdot b_{12} \cdot b_{23} \cdot \dots \cdot b_k

The total indirect effect is: total_indirect=all pathsindirectpath \text{total_indirect} = \sum_{\text{all paths}} \text{indirect}_{\text{path}}


2.1 Examples of Indirect Effects

For three mediators M1M2M3M_1 \to M_2 \to M_3, the indirect effects include:

  1. The direct path through M1,M2,andM3M_1,M_2,and M_3: indirect1=a1b1 \text{indirect}_1 = a_1 \cdot b_1 indirect2=a2b2 \text{indirect}_2 = a_2 \cdot b_2 indirect3=a3b3 \text{indirect}_3 = a_3 \cdot b_3
  2. The chained path through M1M2M_1 \to M_2: indirect12=a1b12b2 \text{indirect}_{12} = a_1 \cdot b_{12} \cdot b_2
  3. The chained path through M2M3M_2 \to M_3: indirect23=a2b23b3 \text{indirect}_{23} = a_2 \cdot b_{23} \cdot b_3
  4. The chained path through M1M2M3M_1 \to M_2 \to M_3: indirect123=a1b12b23b3 \text{indirect}_{123} = a_1 \cdot b_{12} \cdot b_{23} \cdot b_3

3. Total Effect

The total effect combines the direct effect and the total indirect effect: total_effect=cp+total_indirect \text{total_effect} = cp + \text{total_indirect}

Where cpcp is the direct effect.


4. Comparison of Indirect Effects

When there are multiple mediators or pathways, comparing their indirect effects provides insights into the relative influence of each mediator or chain.


4.1 Comparing Indirect Effects

The contrast between two indirect effects, indirectpath1\text{indirect}_{\text{path}_1} and indirectpath2\text{indirect}_{\text{path}_2}, is calculated as: CIpath1vspath2=indirectpath1indirectpath2 CI_{\text{path}_1\text{vs}\text{path}_2} = \text{indirect}_{\text{path}_1} - \text{indirect}_{\text{path}_2}

Interpretation:

  • CIpath1vspath2>0CI_{\text{path}_1\text{vs}\text{path}_2} > 0: Pathway path1\text{path}_1 has a stronger indirect effect.
  • CIpath1vspath2<0CI_{\text{path}_1\text{vs}\text{path}_2} < 0: Pathway path2\text{path}_2 has a stronger indirect effect.

4.2 Example: Three Mediators M1,M2,M3M_1, M_2, M_3

Indirect Effects

For three mediators, the following indirect effects are defined:

  1. Direct Path Effects: indirect1=a1b1 \text{indirect}_1 = a_1 \cdot b_1 indirect2=a2b2 \text{indirect}_2 = a_2 \cdot b_2 indirect3=a3b3 \text{indirect}_3 = a_3 \cdot b_3

  2. Chained Path Effects: indirect12=a1b12b2 \text{indirect}_{12} = a_1 \cdot b_{12} \cdot b_2 indirect23=a2b23b3 \text{indirect}_{23} = a_2 \cdot b_{23} \cdot b_3 indirect123=a1b12b23b3 \text{indirect}_{123} = a_1 \cdot b_{12} \cdot b_{23} \cdot b_3

Comparisons

The indirect effects are compared as follows: CI1vs2=indirect1indirect2 CI_{1\text{vs}2} = \text{indirect}_1 - \text{indirect}_2 CI1vs3=indirect1indirect3 CI_{1\text{vs}3} = \text{indirect}_1 - \text{indirect}_3 CI2vs3=indirect2indirect3 CI_{2\text{vs}3} = \text{indirect}_2 - \text{indirect}_3 CI1vs12=indirect1indirect12 CI_{1\text{vs}12} = \text{indirect}_1 - \text{indirect}_{12} CI1vs23=indirect1indirect23 CI_{1\text{vs}23} = \text{indirect}_1 - \text{indirect}_{23} CI1vs123=indirect1indirect123 CI_{1\text{vs}123} = \text{indirect}_1 - \text{indirect}_{123} CI2vs12=indirect2indirect12 CI_{2\text{vs}12} = \text{indirect}_2 - \text{indirect}_{12} CI2vs23=indirect2indirect23 CI_{2\text{vs}23} = \text{indirect}_2 - \text{indirect}_{23} CI2vs123=indirect2indirect123 CI_{2\text{vs}123} = \text{indirect}_2 - \text{indirect}_{123} CI3vs12=indirect3indirect12 CI_{3\text{vs}12} = \text{indirect}_3 - \text{indirect}_{12} CI3vs23=indirect3indirect23 CI_{3\text{vs}23} = \text{indirect}_3 - \text{indirect}_{23} CI3vs123=indirect3indirect123 CI_{3\text{vs}123} = \text{indirect}_3 - \text{indirect}_{123} CI12vs23=indirect12indirect23 CI_{12\text{vs}23} = \text{indirect}_{12} - \text{indirect}_{23} CI12vs123=indirect12indirect123 CI_{12\text{vs}123} = \text{indirect}_{12} - \text{indirect}_{123} CI23vs123=indirect23indirect123 CI_{23\text{vs}123} = \text{indirect}_{23} - \text{indirect}_{123}

5. C1 and C2 Coefficients

For C1- and C2-measurement conditions, the coefficients are calculated as follows:

  1. C2-Measurement Coefficient (X1b,iX1_{b,i}): X1b,i=bi+di X1_{b,i} = b_i + d_i

  2. C1-Measurement Coefficient (X0b,iX0_{b,i}): X0b,i=X1b,idi X0_{b,i} = X1_{b,i} - d_i

For chained pathways: 1. C2-Measurement Coefficient (X1b,ijX1_{b,ij}): X1b,ij=bij+dij X1_{b,ij} = b_{ij} + d_{ij}

  1. C1-Measurement Coefficient (X0b,ijX0_{b,ij}): X0b,ij=X1b,ijdij X0_{b,ij} = X1_{b,ij} - d_{ij} — For three mediators M1,M2,M3M_1, M_2, M_3, the coefficients are calculated as follows:

    • C2-Measurement Coefficient: X1b,1=b1+d1 X1_{b,1} = b_1 + d_1

    • C1-Measurement Coefficient: X0b,1=X1b,1d1 X0_{b,1} = X1_{b,1} - d_1

    • C2-Measurement Coefficient: X1b,2=b2+d2 X1_{b,2} = b_2 + d_2

    • C1-Measurement Coefficient: X0b,2=X1b,2d2 X0_{b,2} = X1_{b,2} - d_2

    • C2-Measurement Coefficient: X1b,3=b3+d3 X1_{b,3} = b_3 + d_3

    • C1-Measurement Coefficient: X0b,3=X1b,3d3 X0_{b,3} = X1_{b,3} - d_3

    • C2-Measurement Coefficient: X1b,12=b12+d12 X1_{b,12} = b_{12} + d_{12}

    • C1-Measurement Coefficient: X0b,12=X1b,12d12 X0_{b,12} = X1_{b,12} - d_{12}

6. Summary of Regression Equations

This section summarizes all the regression equations:

  1. Outcome Difference Model (YdiffY_{\text{diff}}): Ydiff=cp+i=1N(biMdiff,i+diMavg,i)+e Y_{\text{diff}} = cp + \sum_{i=1}^N \left( b_i M_{\text{diff},i} + d_i M_{\text{avg},i} \right) + e

  2. Mediator Difference Model (Mdiff,iM_{\text{diff},i}): Mdiff,i=ai+j<i(bjiMdiff,j+djiMavg,j)+ϵi M_{\text{diff},i} = a_i + \sum_{j<i} \left( b_{ji} M_{\text{diff},j} + d_{ji} M_{\text{avg},j} \right) + \epsilon_i

  3. Indirect Effects: indirect1k=a1b12b23bk \text{indirect}_{1 \dots k} = a_1 \cdot b_{12} \cdot b_{23} \cdot \dots \cdot b_k

  4. Comparison of Indirect Effects CIpath1vspath2=indirectpath1indirectpath2 CI_{\text{path}_1\text{vs}\text{path}_2} = \text{indirect}_{\text{path}_1} - \text{indirect}_{\text{path}_2}

  5. C1- and C2-Measurement Coefficients: X1b,i=bi+di,X0b,i=X1b,idi X1_{b,i} = b_i + d_i, \quad X0_{b,i} = X1_{b,i} - d_i X1b,ij=bij+dij,X0b,ij=X1b,ijdij X1_{b,ij} = b_{ij} + d_{ij}, \quad X0_{b,ij} = X1_{b,ij} - d_{ij}

By combining these equations, the GenerateModelCN function supports chained mediation analysis with flexibility in handling nested pathways.