Skip to contents

Functions for forming bootstrap confidence intervals for the standardized solution.

Usage

standardizedSolution_boot(
  object,
  level = 0.95,
  type = "std.all",
  boot_delta_ratio = FALSE,
  boot_ci_type = c("perc", "bc", "bca.simple"),
  save_boot_est_std = TRUE,
  boot_pvalue = TRUE,
  boot_pvalue_min_size = 1000,
  ...
)

Arguments

object

A 'lavaan'-class object, fitted with 'se = "boot"'.

level

The level of confidence of the confidence intervals. Default is .95.

type

The type of standard estimates. The same argument of lavaan::standardizedSolution(), and support all values supported by lavaan::standardizedSolution(). Default is "std.all".

boot_delta_ratio

The ratio of (a) the distance of the bootstrap confidence limit from the point estimate to (b) the distance of the delta-method limit from the point estimate. Default is FALSE.

boot_ci_type

The type of the bootstrapping confidence intervals. Support percentile confidence intervals ("perc", the default) and bias-corrected confidence intervals ("bc" or "bca.simple").

save_boot_est_std

Whether the bootstrap estimates of the standardized solution are saved. If saved, they will be stored in the attribute boot_est_std. Default is TRUE.

boot_pvalue

Whether asymmetric bootstrap p-values are computed. Default is TRUE.

boot_pvalue_min_size

Integer. The asymmetric bootstrap p-values will be computed only if the number of valid bootstrap estimates is at least this value. Otherwise, NA will be returned. If the number of valid bootstrap samples is less than this value, then boot_pvalue will be set to FALSE.

...

Other arguments to be passed to lavaan::standardizedSolution().

Value

The output of lavaan::standardizedSolution(), with bootstrap confidence intervals appended to the right, with class set to sbt_std_boot. It has a print method (print.sbt_std_boot()) that can be used to print the standardized solution in a format similar to that of the printout of the summary() of a lavaan::lavaan object.

Details

standardizedSolution_boot() receives a lavaan::lavaan object fitted with bootstrapping standard errors requested and forms the confidence intervals for the standardized solution.

It works by calling lavaan::standardizedSolution() with the bootstrap estimates of free parameters in each bootstrap sample to compute the standardized estimates in each sample.

Alternative, call store_boot() to computes and store bootstrap estimates of the standardized solution. This function will then retrieve them, even if se was not set to "boot" or "bootstrap" when fitting the model.

Bootstrap Confidence Intervals

It supports percentile and bias-corrected bootstrap confidence intervals.

Bootstrap Standard Errors

The standard errors are the standard deviation of the bootstrap estimates, which can be different from the delta-method standard errors.

Bootstrap Asymmetric p-Values

If percentile bootstrap confidence interval is requested, asymmetric bootstrap p-values are also computed, using the method presented in Asparouhov and Muthén (2021).

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-Bootstrap%20-%20Pvalue.pdf

Author

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448. Originally proposed in an issue at GitHub https://github.com/simsem/semTools/issues/101#issue-1021974657, inspired by a discussion at the Google group for lavaan https://groups.google.com/g/lavaan/c/qQBXSz5cd0o/m/R8YT5HxNAgAJ. boot::boot.ci() is used to form the percentile confidence intervals in this version.

Examples


library(lavaan)
set.seed(5478374)
n <- 50
x <- runif(n) - .5
m <- .40 * x + rnorm(n, 0, sqrt(1 - .40))
y <- .30 * m + rnorm(n, 0, sqrt(1 - .30))
dat <- data.frame(x = x, y = y, m = m)
model <-
'
m ~ a*x
y ~ b*m
ab := a*b
'

# Should set bootstrap to at least 2000 in real studies
fit <- sem(model, data = dat, fixed.x = FALSE,
           se = "boot",
           bootstrap = 100)
summary(fit)
#> lavaan 0.6-19 ended normally after 1 iteration
#> 
#>   Estimator                                         ML
#>   Optimization method                           NLMINB
#>   Number of model parameters                         5
#> 
#>   Number of observations                            50
#> 
#> Model Test User Model:
#>                                                       
#>   Test statistic                                 0.020
#>   Degrees of freedom                                 1
#>   P-value (Chi-square)                           0.887
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                            Bootstrap
#>   Number of requested bootstrap draws              100
#>   Number of successful bootstrap draws             100
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   m ~                                                 
#>     x          (a)    0.569    0.325    1.749    0.080
#>   y ~                                                 
#>     m          (b)    0.219    0.146    1.495    0.135
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .m                 0.460    0.086    5.381    0.000
#>    .y                 0.570    0.110    5.178    0.000
#>     x                 0.078    0.012    6.782    0.000
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>     ab                0.125    0.126    0.992    0.321
#> 

std <- standardizedSolution_boot(fit)
#> Warning: The number of bootstrap samples (100) is less than 'boot_pvalue_min_size' (1000). Bootstrap p-values are not computed.
std
#> 
#> Bootstrapping:
#>                                     
#>  Valid Bootstrap Samples: 100       
#>  Level of Confidence:     95.0%     
#>  CI Type:                 Percentile
#>  Standardization Type:    std.all   
#> 
#> Parameter Estimates Settings:
#>                                                 
#>  Standard errors:                      Bootstrap
#>  Number of requested bootstrap draws:  100      
#>  Number of successful bootstrap draws: 100      
#> 
#> Regressions:
#>            Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>  m ~                                                       
#>   x (a)  0.229 0.127 0.072 -0.020 0.477 0.125 -0.041  0.454
#>  y ~                                                       
#>   m (b)  0.198 0.118 0.092 -0.032 0.429 0.115 -0.024  0.464
#> 
#> Variances:
#>            Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>   .m     0.948 0.058 0.000  0.834 1.062 0.057  0.793  1.000
#>   .y     0.961 0.047 0.000  0.869 1.052 0.052  0.785  1.000
#>    x     1.000                                             
#> 
#> Defined Parameters:
#>            Std    SE     p  CI.Lo CI.Up   bSE bCI.Lo bCI.Up
#>  ab (ab) 0.045 0.040 0.259 -0.033 0.124 0.043 -0.007  0.164
#> 
#> Footnote:
#> - Std: Standardized estimates.
#> - SE: Delta method standard errors.
#> - p: Delta method p-values.
#> - CI.Lo, CI.Up: Delta method confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.

# Print in a friendly format with only standardized solution
print(std, output = "text")
#> 
#> Standardized Estimates Only
#> 
#>   Standard errors                            Bootstrap
#>   Standard errors (boot.se)                  Bootstrap
#>   Confidence interval (boot.ci.)             Bootstrap
#>   Confidence Level (boot.ci.)                    95.0%
#>   Bootstrap CI Type (boot.ci.)              Percentile
#>   Standardization Type                         std.all
#>   Number of requested bootstrap draws              100
#>   Number of successful bootstrap draws             100
#> 
#> Regressions:
#>                Standardized  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>   m ~                                                                   
#>     x          (a)    0.229    0.127    1.800    0.072   -0.020    0.477
#>   y ~                                                                   
#>     m          (b)    0.198    0.118    1.684    0.092   -0.032    0.429
#>   boot.se boot.ci.lower boot.ci.upper
#>                                      
#>     0.125   -0.041         0.454     
#>                                      
#>     0.115   -0.024         0.464     
#> 
#> Variances:
#>                Standardized  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>    .m                 0.948    0.058   16.325    0.000    0.834    1.062
#>    .y                 0.961    0.047   20.595    0.000    0.869    1.052
#>     x                 1.000                               1.000    1.000
#>   boot.se boot.ci.lower boot.ci.upper
#>     0.057    0.793         1.000     
#>     0.052    0.785         1.000     
#>        NA       NA            NA     
#> 
#> Defined Parameters:
#>                Standardized  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>     ab                0.045    0.040    1.130    0.259   -0.033    0.124
#>   boot.se boot.ci.lower boot.ci.upper
#>     0.043   -0.007         0.164     
#> 

# Print in a friendly format with both unstandardized
# and standardized solution
print(std, output = "text", standardized_only = FALSE)
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                            Bootstrap
#>   Number of requested bootstrap draws              100
#>   Number of successful bootstrap draws             100
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>   m ~                                                                   
#>     x          (a)    0.569    0.325    1.749    0.080   -0.098    1.261
#>   y ~                                                                   
#>     m          (b)    0.219    0.146    1.495    0.135   -0.020    0.613
#>  Standardized Std.Err.std ci.std.lower ci.std.upper
#>                                                    
#>     0.229        0.125      -0.041        0.454    
#>                                                    
#>     0.198        0.115      -0.024        0.464    
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>    .m                 0.460    0.086    5.381    0.000    0.279    0.623
#>    .y                 0.570    0.110    5.178    0.000    0.345    0.775
#>     x                 0.078    0.012    6.782    0.000    0.055    0.101
#>  Standardized Std.Err.std ci.std.lower ci.std.upper
#>     0.948        0.057       0.793        1.000    
#>     0.961        0.052       0.785        1.000    
#>     1.000           NA          NA           NA    
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>     ab                0.125    0.126    0.992    0.321   -0.019    0.501
#>  Standardized Std.Err.std ci.std.lower ci.std.upper
#>     0.045        0.043      -0.007        0.164    
#> 

# hist_qq_boot() can be used to examine the bootstrap estimates
# of a parameter
hist_qq_boot(std, param = "ab")


# scatter_boot() can be used to examine the bootstrap estimates
# of two or more parameters
scatter_boot(std, params = c("ab", "a", "b"))