This function computes bootstrap estimates of a fitted structural equation model and stores the estimates for further processing.
Usage
store_boot(
object,
type = "std.all",
do_bootstrapping = TRUE,
R = 1000,
boot_type = "ordinary",
parallel = c("no", "multicore", "snow"),
ncpus = parallel::detectCores(logical = FALSE) - 1,
iseed = NULL,
keep.idx = FALSE,
bootstrapLavaan_args = list()
)
Arguments
- object
A 'lavaan'-class object, fitted with 'se = "boot"'.
- type
The type of standard estimates. The same argument of
lavaan::standardizedSolution()
, and support all values supported bylavaan::standardizedSolution()
. Default is"std.all"
.- do_bootstrapping
If
TRUE
and bootstrapping was not requested when fitting the model, bootstrapping will be done usinglavaan::bootstrapLavaan()
. Default isTRUE
.- R
If
lavaan::bootstrapLavaan()
is called (seedo_bootstrapping
), this is the number of bootstrap samples, to be used bylavaan::bootstrapLavaan()
.- boot_type
If
lavaan::bootstrapLavaan()
is called (seedo_bootstrapping
), this is type of bootstrapping, to be passed to the argumenttype
oflavaan::bootstrapLavaan()
. Default is"ordinary"
. See the help page oflavaan::bootstrapLavaan()
for details.- parallel
If
lavaan::bootstrapLavaan()
is called (seedo_bootstrapping
), whether parallel processing will be used. to be passed to the argument of the same name inlavaan::bootstrapLavaan()
. Default is"no"
. Can be"snow"
or"multicore"
. See the help page oflavaan::bootstrapLavaan()
for details.- ncpus
If
lavaan::bootstrapLavaan()
is called (seedo_bootstrapping
), and parallel processing is to be used, this is the number of CPU cores to use, to be passed to the argument of the same name inlavaan::bootstrapLavaan()
. Default isparallel::detectCores(logical = FALSE) - 1
, the number of physical cores minus 1, different from the default oflavaan::bootstrapLavaan()
but identical to the default oflavaan::sem()
andlavaan::cfa()
.- iseed
If
lavaan::bootstrapLavaan()
is called (seedo_bootstrapping
), this should be an integer used to generate reproducible bootstrap results, to be passed to the argument of the same name inlavaan::bootstrapLavaan()
. Default isNULL
but it should nearly always be set to an arbitrary integer. See the help page oflavaan::bootstrapLavaan()
for details.- keep.idx
Whether the indices of cases selected in each bootstrap sample is to be stored. To be passed to the argument of the same name in
lavaan::bootstrapLavaan()
. Default isFALSE
.- bootstrapLavaan_args
A named list of additional arguments to be passed to
lavaan::bootstrapLavaan()
. Note that the other arguments instore_boot()
takes precedence, overriding arguments of the same names in this list, if any.
Value
The original lavaan
object is
returned with the following objects
stored in the external
slot:
sbt_boot_std
: The matrix of bootstrap estimates in the standardized solution.sbt_boot_def
: The matrix of bootstrap estimates of user-defined parameters, if any.sbt_boot_ustd
: The matrix of bootstrap estimates of free parameters, if bootstrapping is not requested when fitting the model (i.e.,se
is not set to"boot"
or"bootstrap"
when fitting the model inlavaan
).
Details
The function store_boot()
receives a
lavaan::lavaan object, optionally
fitted with bootstrapping standard errors
requested, and compute and store
the bootstrap estimates of user-defined
parameters and estimates in the
standardized solution.
If bootstrapping was not requested
when fitting the model (i.e., se
not set to "boot"
or "bootstrap"
),
then bootstrapping will be conducted
using lavaan::bootstrapLavaan()
to
compute bootstrap estimates of free
parameters. Otherwise, the stored
bootstrap estimates will be used in
subsequent steps.
For standardized solution bootstrap
estimates, it works by calling
lavaan::standardizedSolution()
with the bootstrap estimates
of free parameters in each bootstrap sample
to compute the standardized estimates
in each sample.
For user-defined parameters, it works by calling the function used to compute user-defined parameters with the bootstrap estimates of free parameters in each bootstrap samples to compute the user-defined parameters.
The bootstrap estimates are then
stored in the external
slot
of the fit object for further
processing.
Author
Shu Fai Cheung
https://orcid.org/0000-0002-9871-9448.
Based on semhelpinghands::standardizedSolution_boot_ci()
,
which was originally proposed in an issue at GitHub
https://github.com/simsem/semTools/issues/101#issue-1021974657,
inspired by a discussion at
the Google group for lavaan
https://groups.google.com/g/lavaan/c/qQBXSz5cd0o/m/R8YT5HxNAgAJ.
Unlike semhelpinghands::standardizedSolution_boot_ci()
,
this function only computes and stores
the bootstrap estimates.
Examples
library(lavaan)
set.seed(5478374)
n <- 50
x <- runif(n) - .5
m <- .40 * x + rnorm(n, 0, sqrt(1 - .40))
y <- .30 * m + rnorm(n, 0, sqrt(1 - .30))
dat <- data.frame(x = x, y = y, m = m)
model <-
'
m ~ a*x
y ~ b*m
ab := a*b
'
# Should set bootstrap to at least 2000 in real studies
fit <- sem(model, data = dat, fixed.x = FALSE,
se = "boot",
bootstrap = 100)
summary(fit)
#> lavaan 0.6-19 ended normally after 1 iteration
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 5
#>
#> Number of observations 50
#>
#> Model Test User Model:
#>
#> Test statistic 0.020
#> Degrees of freedom 1
#> P-value (Chi-square) 0.887
#>
#> Parameter Estimates:
#>
#> Standard errors Bootstrap
#> Number of requested bootstrap draws 100
#> Number of successful bootstrap draws 100
#>
#> Regressions:
#> Estimate Std.Err z-value P(>|z|)
#> m ~
#> x (a) 0.569 0.325 1.749 0.080
#> y ~
#> m (b) 0.219 0.146 1.495 0.135
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> .m 0.460 0.086 5.381 0.000
#> .y 0.570 0.110 5.178 0.000
#> x 0.078 0.012 6.782 0.000
#>
#> Defined Parameters:
#> Estimate Std.Err z-value P(>|z|)
#> ab 0.125 0.126 0.992 0.321
#>
fit <- store_boot(fit)