Print method for a
'sbt_ustd_boot' object, which
is the output of
parameterEstimates_boot()
.
Arguments
- x
Object of the class
sbt_ustd_boot
, the output ofparameterEstimates_boot()
.- ...
Optional arguments to be passed to
print()
methods.- nd
The number of digits after the decimal place. Default is 3.
- output
String. How the results are printed. If set to
"table"
, the results are printed in a table format similar to that oflavaan::parameterEstimates()
. If set to"text"
, the results will be printed in a text format similar to the printout of the output ofsummary()
of a 'lavaan'-class object. If set to"lavaan.printer"
, the default,lavaan.printer
will be used to print a more compact version of the"text"
output.- drop_cols
The name(s) of the column(s) to drop if output format is
"lavaan.printer"
. Default is"Z"
, to fit the print out to the usual screen width of 80.
Details
The default format of the printout,
"lavaan.printer"
,
is a compact version of the lavaan-style
printout, generated by lavaan.printer
.
Alternatively, users can request a format
similar to that of the printout
of the summary of a lavaan
output
by setting output
to "text"
. This
format can be used if "lavaan.printer"
failed.
Users can also print the content just
as a data frame by setting output
to "table"
. Not easy to read much
more compact.
Author
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448
Examples
library(lavaan)
set.seed(5478374)
n <- 50
x <- runif(n) - .5
m <- .40 * x + rnorm(n, 0, sqrt(1 - .40))
y <- .30 * m + rnorm(n, 0, sqrt(1 - .30))
dat <- data.frame(x = x, y = y, m = m)
model <-
'
m ~ a*x
y ~ b*m
ab := a*b
'
# Should set bootstrap to at least 2000 in real studies
fit <- sem(model, data = dat, fixed.x = FALSE)
fit <- store_boot(fit,
do_bootstrapping = TRUE,
R = 100,
iseed = 1234)
est <- parameterEstimates_boot(fit)
#> Warning: The number of bootstrap samples (100) is less than 'boot_pvalue_min_size' (1000). Bootstrap p-values are not computed.
est
#>
#> Bootstrapping:
#>
#> Valid Bootstrap Samples: 100
#> Level of Confidence: 95.0%
#> CI Type: Percentile
#>
#> Parameter Estimates Settings:
#>
#> Standard errors: Standard
#> Information: Expected
#> Information saturated (h1) model: Structured
#>
#> Regressions:
#> Estimate SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> m ~
#> x (a) 0.569 0.343 0.097 -0.103 1.240 0.326 -0.054 1.276
#> y ~
#> m (b) 0.219 0.153 0.153 -0.081 0.519 0.151 -0.060 0.572
#>
#> Variances:
#> Estimate SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> .m 0.460 0.092 0.000 0.280 0.641 0.093 0.248 0.673
#> .y 0.570 0.114 0.000 0.347 0.794 0.104 0.386 0.806
#> x 0.078 0.016 0.000 0.048 0.109 0.012 0.052 0.106
#>
#> Defined Parameters:
#> Estimate SE p CI.Lo CI.Up bSE bCI.Lo bCI.Up
#> ab (ab) 0.125 0.115 0.279 -0.101 0.350 0.135 -0.027 0.446
#>
#> Footnote:
#> - SE: Original standard errors.
#> - p: Original p-values.
#> - CI.Lo, CI.Up: Original confidence intervals.
#> - bSE: Bootstrap standard errors.
#> - bCI.Lo, bCI.Up: Bootstrap confidence intervals.